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lhr (535,102 nodes and 601,678 links)
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Internet graph

Internet is a network of Autonomous Systems:
groups of networks sharing the same routing policy
identified with Autonomous System Numbers (ASN) 

Autonomous System Numbers:
http://www.iana.org/assignments/as-numbers
Internet topology on AS-level:

the arrangement of ASes and their interconnections
Analyzing the Internet topology and finding properties of 
associated graphs rely on mining data and capturing 
information about Autonomous Systems (ASes).
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Internet AS-level data

Source of data are routing tables:
Route Views: http://www.routeviews.org

most participating ASes reside in North America
RIPE (Réseaux IP européens): http://www.ripe.net/ris

most participating ASes reside in Europe
The BGP routing tables are collected from multiple 
geographically distributed BGP Cisco routers and Zebra 
servers. 
Analyzed datasets were collected at 00:00 am on July 31, 
2003 and 00:00 am on July 31, 2008. 
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Analyzed datasets

Sample datasets:
Route Views:
TABLE_DUMP| 1050122432| B| 204.42.253.253| 267| 
3.0.0.0/8| 267 2914 174 701| IGP| 204.42.253.253| 0| 
0| 267:2914 2914:420 2914:2000 2914:3000| NAG| |
RIPE:
TABLE_DUMP| 1041811200| B| 212.20.151.234| 13129| 
3.0.0.0/8| 13129 6461 7018 | IGP| 212.20.151.234| 0| 0| 
6461:5997 13129:3010| NAG| |

6
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Internet topology at AS level

7

Datasets collected from Border Gateway Protocols (BGP) 
routing tables are used to infer the Internet topology at 
AS-level.
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Internet topology

Datasets are collected from Border Gateway Protocols (BGP) 
routing tables.
The Internet topology is characterized by the presence of 
various power-laws observed when considering:

node degree vs. node rank
node degree frequency vs. degree 
number of nodes within a number of hops vs. number of 
hops
eigenvalues of the adjacency matrix and the normalized 
Laplacian matrix vs. the order of the eigenvalues

Faloutsos et al., 1999 and Siganos et al.,  2003 



November 24, 2010 ECCSC 2010, Belgrade, Serbia 9

Roadmap

Internet topology and the BGP datasets
Power-laws and spectrum of a graph
Power-laws and the Internet topology
Spectral analysis of the Internet graph
Conclusions and references



November 24, 2010 ECCSC 2010, Belgrade, Serbia 10

Internet matrices

Adjacency matrix  A(G):

where i and j are the graph nodes.

Normalized Laplacian matrix NL(G):

where di and dj are degrees of node i and j, respectively.
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Power laws: eigenvalues

The eigenvalues λi of the adjacency matrix and the normalized 
Laplacian matrix are sorted in decreasing order and plotted versus 
the associated increasing sequence of numbers i representing the 
order of the eigenvalue.
The power-law for the adjacency matrix implies: 

,
The power-law for the normalized Laplacian matrix implies:

,
where ε and L are the eigenvalue power-law exponents.

ελ iai ∝

L
Li i∝λ
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Analysis of datasets

Calculated and plotted on a log-log scale are:
node degree vs. node rank
frequency of node degree vs. node degree
eigenvalues vs. index

The power-law exponents are calculated from the linear regression 
lines 10a xb, with segment a and slope b when plotted on a log-log 
scale.
Linear regression is used to determine the correlation coefficient 
between the regression line and the plotted data. 
A high correlation coefficient between the regression line and the 
plotted data indicates the existence of a power-law, which implies 
that node degree, frequency of node degree, and eigenvalues follow 
a power-law dependency on the rank, node degree, and index, 
respectively.
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Spectrum of a graph

Spectrum of a graph is:
the collection of all eigenvalues of a matrix
closely related to certain graph invariants
associated with topological characteristics of the 
network such as number of edges, connected components, 
presence of cohesive clusters

If x is an n-dimensional real vector, then x is called the eigenvector 
of matrix A with eigenvalue λ if and only if it satisfies: 

where λ is a scalar quantity.

13

,xAx λ=
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Spectrum of a graph

The number of times 0 appears as an eigenvalue of the 
Laplacian matrix is equal to the number of connected 
components in a graph.
Algebraic connectivity, the second smallest eigenvalue of 
a normalized Laplacian matrix is:

related to the connectivity characteristic of a graph
Elements of the eigenvector corresponding to the largest 
eigenvalue of the normalized Laplacian matrix tend to be 
positioned close to each other if they correspond to AS 
nodes with similar connectivity patterns constituting 
clusters.

Chung et al., 1997
M. Fiedler, 1973

D. Vukadinovic, P. Huang, and T. Erlebach, 2001

14
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Spectrum of a graph

The eigenvectors corresponding to large eigenvalues
contain information relevant to clustering.
Large eigenvalues and the corresponding eigenvectors 
provide information suggestive to the intracluster traffic 
patterns of the Internet topology.
We consider both the adjacency and the normalized 
Laplacian matrices.

C. Gkantsidis, M. Mihail, and E. Zegura, 2003
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Eigenvalues of the adjacency matrix
order

Route 
Views 
2003

Route 
Views 
2008

RIPE 
2003

RIPE 
2008

1 64.30 85.43 66.65 122.28
2 47.75 58.56 54.19 63.94
3 38.15 42.77 38.24 46.14
4 36.23 40.85 36.14 41.98
5 29.88 39.69 31.21 41.08
6 28.50 37.85 27.38 38.93
7 25.47 36.21 26.41 37.94
8 25.06 34.66 25.06 36.47
9 24.13 31.58 23.86 35.08
10 22.51 29.34 23.32 34.47
11 21.61 27.40 22.02 30.97
12 20.69 25.69 21.77 30.54
13 18.58 25.00 20.75 29.68
14 17.94 24.82 19.55 27.03
15 17.78 23.89 18.67 25.74
16 17.31 23.69 18.42 25.35
17 16.99 22.81 17.85 24.83
18 16.75 22.46 17.44 24.30
19 16.22 22.04 17.24 24.06
20 16.01 21.36 16.63 24.00
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Power laws: eigenvalues vs. index

Adjacency matrix:
Route Views 2003 datasets: ε= –0.5713 and r= –0.9990
Route Views 2008 datasets: ε= –0.4860 and r= –0.9982

ε= power-law exponent; r= correlation coefficient



November 24, 2010 ECCSC 2010, Belgrade, Serbia 19

Power laws: eigenvalues vs. index

Adjacency matrix:
RIPE 2003 datasets: ε= –0.5232 and r= –0.9989
RIPE 2008 datasets: ε= –0.4927 and r= –0.9970

ε= power-law exponent; r= correlation coefficient
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Confidence intervals: 
eigenvalues vs. index

Adjacency matrix:
r> 99% for all datasets

r= correlation coefficient
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Power laws: eigenvalues vs. index

Normalized Laplacian matrix:
Route Views 2003 datasets: L= –0.0198 and r= –0.9564
Route Views 2008 datasets: L= –0.0177 and r= –0.9782

L= power-law exponent; r= correlation coefficient
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Power laws: eigenvalues vs. rank

Normalized Laplacian matrix:
RIPE 2003 datasets: L= –0.5232 and r= –0.9989
RIPE 2008 datasets: L= –0.4927 and r= –0.9970

L= power-law exponent; r= correlation coefficient
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Confidence intervals: 
eigenvalues vs. rank

Normalized Laplacian matrix:
r> 95% for all datasets

r= correlation coefficient
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Clusters of connected ASes: 
Route Views

A dot in the position (x, y) represents the connection 
patterns between AS nodes. 
Existence of higher connectivity inside a particular cluster 
and relatively lower connectivity between clusters is visible.
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Clusters of connected ASes: 
Route Views

Zoomed view of Route Views 2008 datasets.



November 24, 2010 ECCSC 2010, Belgrade, Serbia 27

Clusters of connected ASes: 
RIPE

Similar pattern for Route Views and RIPE 2003 and 2008 
datasets
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Spectral analysis of Internet graphs

The second smallest eigenvalue, called "algebraic 
connectivity" of a normalized Laplacian matrix, is related 
to the connectivity characteristic of the graph. 
Elements of the eigenvector corresponding to the largest 
eigenvalue of the normalized Laplacian matrix tend to be 
positioned close to each other if they correspond to AS 
nodes with similar connectivity patterns constituting 
clusters.

Gkantsidis et al., 2003
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Various graphs

Random graphs:
nodes and edges are generated by a random process
Erdős and Rényi model

Small world graphs:
nodes and edges are generated so that most of the 
nodes are connected by a small number of nodes in 
between
Watts and Strogatz model

Scale-free graphs:
graphs whose node degree distribution follow power-law
rich get richer
Barabási and Albert model
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Clusters of AS nodes: 
small world network

Small world network with 20 nodes:
nodes having similar degrees are grouped together based on 
the element values of the eigenvector corresponding to the 
largest eigenvalue of the adjacency matrix
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Clusters of AS nodes: 
small world network

Small world network with 20 nodes:
nodes having similar degrees are not grouped together based 
on the element values of the eigenvector corresponding to 
the second smallest eigenvalue of the adjacency matrix
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Clusters of AS nodes

We calculate the elements of the eigenvectors corresponding 
to the second smallest and the largest eigenvalues of the 
matrix.
These elements are sorted in descending order and are 
plotted vs. the index.
We then calculate the index of AS node based on the index 
of the corresponding element of the eigenvector and plot 
node degree of AS node vs. the index of the AS node. 
We consider both the adjacency and the normalized Laplacian
matrices.
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Eigenvector: 
the second smallest eigenvalue

Route Views and RIPE 2003 and 2008 datasets:
elements of the eigenvectors corresponding to the second 
smallest eigenvalue of the adjacency matrix
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Clusters: 
Route Views 2003 and 2008 datasets

Element values of the eigenvector corresponding to the 
second smallest eigenvalue of the adjacency matrix divide 
nodes into two separate clusters of connected nodes
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Clusters: 
RIPE 2003 and 2008 datasets

Element values of the eigenvector corresponding to the 
second smallest eigenvalue of the adjacency matrix divide 
nodes into two separate clusters of connected nodes
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Eigenvector: 
the largest eigenvalue

Route Views and RIPE 2003 and 2008 datasets:
elements of eigenvectors corresponding to the largest 
eigenvalue of the adjacency matrix
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Clusters: 
Route Views 2003 and 2008 datasets

Element values of the eigenvector corresponding to the 
largest eigenvalue of the adjacency matrix group nodes into 
a cluster of connected nodes towards the highest end of the 
rank spectrum
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Clusters: 
RIPE 2003 and 2008 datasets

Element values of the eigenvector corresponding to the 
largest eigenvalue of the adjacency matrix group nodes into a 
cluster of connected nodes towards the highest end of the 
rank spectrum
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Eigenvector: 
the second smallest eigenvalue

Route Views and RIPE 2003 and 2008 datasets:
elements of eigenvectors corresponding to the second 
smallest eigenvalue of the normalized Laplacian matrix
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Clusters: 
Route Views 2003 and 2008 datasests

Element values of the eigenvector corresponding to the 
second smallest eigenvalue of the normalized Laplacian
matrix group nodes having similar node degrees
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Clusters: 
RIPE 2003 and 2008 datasets

Element values of the eigenvector corresponding to the second 
smallest eigenvalue of the normalized Laplacian matrix group 
nodes having similar node degrees
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Eigenvector: 
the largest eigenvalue

Route Views and RIPE 2003 and 2008 datasets:
elements of eigenvectors corresponding to the largest 
eigenvalue of the normalized Laplacian matrix 
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Clusters: 
Route Views 2003 and 2008 datasets

Element values of the eigenvector corresponding to the 
largest eigenvalue of the normalized Laplacian matrix divide 
nodes into two clusters of connected nodes
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Clusters: 
RIPE 2003 and 2008 datasets

Element values of the eigenvector corresponding to the 
largest eigenvalue of the normalized Laplacian matrix divide 
nodes into two clusters of connected nodes
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Clusters of AS nodes: summary

The second smallest eigenvalue of the normalized Laplacian
matrix groups nodes having similar node degree:

group of nodes having larger node degree follows nodes 
having smaller node degree

Clusters of nodes based on the elements values of the 
eigenvector corresponding to the second smallest 
eigenvalue of the adjacency matrix are similar to clusters 
based on the largest eigenvalue of the normalized 
Laplacian matrix
Clusters the Internet graphs are different from clusters 
of small world networks
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lhr (535,102 nodes and 601,678 links)
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lhr (535,102 nodes and 601,678 links)

http://www.caida.org/home/
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lhr (535,102 nodes and 601,678 links)
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Conclusions
Route Views and RIPE datasets reveal similar trends in the 
development of the Internet topology.
Power-laws exponents have not significantly changed over the years:

they do not capture every property of graph and are only a 
measure used to characterize the Internet topology 

Spectral analysis reveals new historical trends and notable changes 
in the connectivity and clustering of AS nodes over the years.
Element values of the eigenvector corresponding to the second 
smallest and the largest eigenvalues provide clusters of connected 
ASes:

indicate clusters of connected nodes have changed over time
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Conclusions
Similarity of clusters based on the second smallest eigenvalue of 
the adjacency matrix to the largest eigenvalue of the normalized 
Laplacian matrix indicate:
Clusters based on the second smallest eigenvalues of the 
normalized Laplacian matrix:

group nodes having similar node degree
groups of nodes having smaller node degree are followed by 
nodes having larger node degree
indicates second smallest eigenvalues of the normalized 
Laplacian matrix provide node degree information
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Resources

CAIDA: 
The Cooperative Association for Internet Data Analysis 
http://www.caida.org/home/
Walrus - Gallery: Visualization & Navigation 
http://www.caida.org/tools/visualization/walrus/gallery1/
Walrus - Gallery: Abstract Art 
http://www.caida.org/tools/visualization/walrus/gallery2/


